Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321N1 astrocytoma cells.

نویسندگان

  • Andrew E Blum
  • B Corbett Walsh
  • George R Dubyak
چکیده

We previously reported that ATP release from 1321N1 human astrocytoma cells could be stimulated either by activation of G protein-coupled receptors (GPCR) or by hypotonic stress. Cheema et al. (Cheema TA, Ward CE, Fisher SK. J Pharmacol Exp Ther 315: 755-763, 2005) have demonstrated that thrombin activation of protease-activated receptor 1 (PAR1) in 1321N1 cells and primary astrocytes acts synergistically with hypotonic stress to gate the opening of volume-sensitive organic osmolyte and anion channels (VSOAC) and that hypertonic stress strongly inhibits PAR1 gating of VSOAC. We tested the hypothesis that a VSOAC-type permeability might comprise a GPCR-regulated pathway for ATP export by determining whether PAR1-sensitive ATP release from 1321N1 cells is similarly potentiated by hypotonicity but suppressed by hypertonic conditions. Strong hypotonic stress by itself elicited ATP release and positively modulated the response to thrombin. Thrombin-dependent ATP release was also potentiated by mild hypotonic stress that by itself did not stimulate ATP export. Notably, PAR1-sensitive ATP export was greatly inhibited in hypertonic medium. Neither the potency nor efficacy of thrombin as an activator of proximal PAR1 signaling was affected by hypotonicity or hypertonicity. 1,9-Dideoxyforskolin and carbenoxolone similarly attenuated PAR1-dependent ATP release and suppressed the PAR1-independent ATP elicited by strong hypotonic stress. Probenecid attenuated PAR1-stimulated ATP release under isotonic but not mild hypotonic conditions and had no effect on PAR1-independent release stimulated by strong hypotonicity. PAR1-dependent ATP export under all osmotic conditions required concurrent signaling by Ca(2+) mobilization and Rho-GTPase activation. In contrast, PAR1-independent ATP release triggered by strong hypotonicity required neither of these intracellular signals. Thus, we provide the new finding that GPCR-regulated ATP release from 1321N1 astrocytoma cells is remarkably sensitive to both positive and negative modulation by extracellular osmolarity. This supports a model wherein GPCR stimulation and osmotic stress converge on an ATP release pathway in astrocytes that exhibits several features of VSOAC-type channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells.

The ability of subnanomolar concentrations of thrombin to protect both neurons and glia from ischemia and other metabolic insults has recently been reported. In this study, we demonstrate an additional neuroprotective property of thrombin; its ability to promote the release of the organic osmolyte, taurine, in response to hypoosmotic stress. Incubation of human 1321N1 astrocytoma cells with hyp...

متن کامل

Release of cellular UDP-glucose as a potential extracellular signaling molecule.

Identification of a G protein-coupled receptor activated by UDP-glucose led us to develop a sensitive and specific assay for UDP-glucose mass and to test whether this sugar nucleotide is released as an extracellular signaling molecule. Mechanical stimulation of 1321N1 human astrocytoma cells by a change of medium resulted in an increase in extracellular levels of both ATP and UDP-glucose. Where...

متن کامل

Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists.

The P2Y4 receptor is selectively activated by UTP. Although addition of neither ATP nor UDP alone increased intracellular Ca2+ in 1321N1 human astrocytoma cells stably expressing the P2Y4 receptor, combined addition of these nucleotides resulted in a slowly occurring elevation of Ca2+. The possibility that the stimulatory effect of the combined nucleotides reflected formation of UTP by an extra...

متن کامل

Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes.

Previously, we reported that activation of G protein-coupled receptors (GPCR) in 1321N1 human astrocytoma cells elicits a rapid release of ATP that is partially dependent on a G(q)/phophospholipase C (PLC)/Ca(2+) mobilization signaling cascade. In this study we assessed the role of Rho-family GTPase signaling as an additional pathway for the regulation of ATP release in response to activation o...

متن کامل

Purine nucleoside-dependent inhibition of cellular proliferation in 1321N1 human astrocytoma cells.

We examined the effects of purines and the pyrimidine UTP on cellular proliferation in the human astrocytoma cell line 1321N1. Treatment of cultured cells with 100 microM ATP or 2-chloroadenosine (2-CA) resulted in significant reductions in cell numbers after 2 days, whereas adenosine (ADO) exhibited a slower time course of inhibition of cell growth. Treatment with 100 microM UTP had no effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 298 2  شماره 

صفحات  -

تاریخ انتشار 2010